数学立体几何知识点 (菁华3篇)

首页 / 知识 / | 2022-11-30 00:00:00 数学

数学立体几何知识点1

  1.*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

  能够用斜二测法作图。

  2.空间两条直线的位置关系:*行、相交、异面的概念;

  会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

  3.直线与*面

  ①位置关系:*行、直线在*面内、直线与*面相交。

  ②直线与*面*行的判断方法及性质,判定定理是证明*行问题的依据。

  ③直线与*面垂直的证明方法有哪些?

  ④直线与*面所成的角:关键是找它在*面内的射影,范围是

  ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的*面角,确定点到直线的垂线.

  4.*面与*面

  (1)位置关系:*行、相交,(垂直是相交的一种特殊情况)

  (2)掌握*面与*面*行的证明方法和性质。

  (3)掌握*面与*面垂直的证明方法和性质定理。尤其是已知两*面垂直,一般是依据性质定理,可以证明线面垂直。

  (4)两*面间的距离问题点到面的距离问题

  (5)二面角。二面角的*面交的作法及求法:

  ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

  ②垂线、斜线、射影法,一般要求*面的垂线好找,一般在计算时要解一个直角三角形。

  ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法

数学立体几何知识点2

  立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  定义:有两个面互相*行,其余各面都是四边形,且每相邻两个四边形的公共边都互相*行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边*行的全等多边形;侧面、对角面都是*行四边形;侧棱*行且相等;*行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;*行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的*方。

  (3)棱台:

  定义:用一个*行于棱锥底面的*面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的*行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴*行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个*行于圆锥底面的*面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图斜二测画法

  斜二测画法特点:①原来与x轴*行的线段仍然与x*行且长度不变;

  ②原来与y轴*行的线段仍然与y*行,长度为原来的一半。

数学立体几何知识点3

  1、过两点有且只有一条直线

  2、两点之间线段最短

  3、同角或等角的补角相等

  4、同角或等角的余角相等

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、*行公理经过直线外一点,有且只有一条直线与这条直线*行

  8、如果两条直线都和第三条直线*行,这两条直线也互相*行

  9、同位角相等,两直线*行

  10、内错角相等,两直线*行

  11、同旁内角互补,两直线*行

  12、两直线*行,同位角相等

  13、两直线*行,内错角相等

  14、两直线*行,同旁内角互补

  15、定理三角形两边的和大于第三边

  16、推论三角形两边的差小于第三边

  17、三角形内角和定理三角形三个内角的和等于180°

  18、推论1直角三角形的两个锐角互余

  19、推论2三角形的一个外角等于和它不相邻的两个内角的和

  20、推论3三角形的一个外角大于任何一个和它不相邻的内角

  21、全等三角形的对应边、对应角相等

  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  25、边边边公理(SSS)有三边对应相等的两个三角形全等

  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  27、定理1在角的*分线上的点到这个角的两边的距离相等

  28、定理2到一个角的两边的距离相同的点,在这个角的*分线上

  29、角的*分线是到角的两边距离相等的所有点的集合

  30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  31、推论1等腰三角形顶角的*分线*分底边并且垂直于底边

  32、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

  33、推论3等边三角形的各角都相等,并且每一个角都等于60°

  34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35、推论1三个角都相等的三角形是等边三角形

  36、推论2有一个角等于60°的等腰三角形是等边三角形

  37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38、直角三角形斜边上的中线等于斜边上的一半

  39、定理线段垂直*分线上的点和这条线段两个端点的距离相等

  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上

  41、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

  42、定理1关于某条直线对称的两个图形是全等形

  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45、逆定理如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称

  46、勾股定理直角三角形两直角边a、b的*方和、等于斜边c的*方,即a^2+b^2=c^2

  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  48、定理四边形的内角和等于360°

  49、四边形的外角和等于360°

  50、多边形内角和定理n边形的内角的和等于(n-2)×180°

  51、推论任意多边的外角和等于360°

  52、*行四边形性质定理1*行四边形的对角相等

  54、推论夹在两条*行线间的*行线段相等

  55、*行四边形性质定理3*行四边形的对角线互相*分

  56、*行四边形判定定理1两组对角分别相等的四边形是*行四边形

  57、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

  58、*行四边形判定定理3对角线互相*分的四边形是*行四边形

  59、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

  60、矩形性质定理1矩形的四个角都是直角

  61、矩形性质定理2矩形的对角线相等

  62、矩形判定定理1有三个角是直角的四边形是矩形

  63、矩形判定定理2对角线相等的*行四边形是矩形

  64、菱形性质定理1菱形的四条边都相等

  65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角

  66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

  67、菱形判定定理1四边都相等的四边形是菱形

  68、菱形判定定理2对角线互相垂直的*行四边形是菱形

  69、正方形性质定理1正方形的四个角都是直角,四条边都相等

  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

  71、定理1关于中心对称的两个图形是全等的

  72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心*分

  73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

  74、等腰梯形性质定理等腰梯形在同一底上的两个角相等

  75、等腰梯形的两条对角线相等

  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  77、对角线相等的梯形是等腰梯形

  78、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰

  80、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边

  81、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半

  82、梯形中位线定理梯形的中位线*行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

  83、(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d

  84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例

  87、推论*行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边

  89、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90、定理*行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  94、判定定理3三边对应成比例,两三角形相似(SSS)

  95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96、性质定理1相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

  97、性质定理2相似三角形周长的比等于相似比

  98、性质定理3相似三角形面积的比等于相似比的*方

  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101、圆是定点的距离等于定长的点的集合

  102、圆的内部可以看作是圆心的距离小于半径的点的'集合

  103、圆的外部可以看作是圆心的距离大于半径的点的集合

  104、同圆或等圆的半径相等

  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

  107、到已知角的两边距离相等的点的轨迹,是这个角的*分线

  108、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

  109、定理不在同一直线上的三个点确定一条直线

  110、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

  111、推论1

  ①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧

  ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧

  ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧

  112、推论2圆的两条*行弦所夹的弧相等

  113、圆是以圆心为对称中心的中心对称图形

  114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116、定理一条弧所对的圆周角等于它所对的圆心角的一半

  117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  121、①直线L和⊙O相交d﹤r

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d﹥r

  122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

  123、切线的性质定理圆的切线垂直于经过切点的半径

  124、推论1经过圆心且垂直于切线的直线必经过切点

  125、推论2经过切点且垂直于切线的直线必经过圆心

  126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

  127、圆的外切四边形的两组对边的和相等

  128、弦切角定理弦切角等于它所夹的弧对的圆周角

  129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134、如果两个圆相切,那么切点一定在连心线上

  135、①两圆外离d﹥R+r

  ②两圆外切d=R+r

  ③两圆相交R-r﹤d﹤R+r(R﹥r)

  ④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)

  136、定理相交两圆的连心线垂直*分两圆的公共弦

  137、定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  139、正n边形的每个内角都等于(n-2)×180°/n

  140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  141、正n边形的面积Sn=pnrn/2

  p表示正n边形的周长

  142、正三角形面积√3a/4

  a表示边长

  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  144、弧长计算公式:L=n∏R/180

  145、扇形面积公式:S扇形=n∏R/360=LR/2

  146、内公切线长=d-(R-r)外公切线长=d-(R+r)

  图形认识初步

  1、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。

  ①立体图形:有些几何图形(如长方形,正方体,圆柱,圆锥,球等)的各部分都不在同一*面内,它们是立体图形。

  ②*面图形:有些几何图形(如线段,角,三角形,长方形,圆等)的各部分都在同一*面内,它们是*面图形

  (2)从不同方向看物体

  ①从正面看,可以分清物体的长度和高度

  ③从左面看,可以分清物体的高度和宽度

  ④从上面看,可以分清物体的长度和宽度

  2、体、面、线,点

  体:几何体也简称体

  面:包围着体的是面

  线:面和面相交的地方是线

  点:线和线相交的地方是点

  点动成线,线动成面,面动成体

  注:(1)一般柱体都可以由底面的*面图形沿棱*移得到

  (2)一般来说,有曲面的几何体,都可以由某一*面图形绕某一直线旋转得到

  3、直线,射线,线段

  (1)直线的基本性质(直线公理)

  经过两点有一条直线,并且只要一条直线,简称为2点确定一条直线

  (2)表示方法

  用一个小写字母表示,如直线l,线段a

  用大写字母表示如,线段AB,射线OA

  (3)点与直线的位置关系

  点在直线上________x_______

  A点直线外__________________P

  (4)两直线相交

  两条直线相交有一个公共点,即交点

  注意公理和定理的区分

  (1)命题的定义:判断一件事情的语句叫做命题

  (2)组成:①命题是由题设和结论组成的,题设是已知,结论是由已知推出的事项

  ②命题可以写成“如果………那么”的形式

  ③经过推论证实的真命题叫定理

  3、线段的性质

  (1)线段的画法

  尺规法:用圆规在射线AC上截取AB=a

  度量法:先量出线段a的长度,在画出一条等于这个长度的线段

  (2)线段的比较

  叠合法:即把其中的一条线段移到另一条线段上作比较

  度量法:即用刻度尺分别测量出它们的长度作比较

  (3)线段的中点

  一个点把其中一条线段分成两条相等的线段,这个点就叫做这条线段的中点,类似的还有线段的3等分点等。

  (4)线段公理

  两点连线的所有线段中,线段最短

  (5)线段距离:连接两点间线段的长度,叫做两点间的距离

  4、角

  定义:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线是角的两条边。

  注:角的大小和边长没有关系

  角可以看做由一条射线绕着它的端点旋转而成的图形,当终止位置和起始位置成一条直线时所成的角叫做*角,等终止位置和起始位置重合是所形成的的角叫做周角。

  (2)角的表示法

  ①用3个大写字母表示,表示顶点的字母必须写中间

  ②当顶角处只有一个角时,可以用表示顶角的一个大写字母表示

  ③用数字或希腊字母表示

  (3)角的分类

  ①锐角:大于0°,小于90°的角

  ②直角:等于90°的角

  ④钝角:大于90°,小于180°的角

  ⑤*角:等于180°的角

  ⑥周角:等于360°的角

  (4)角的度量和换算

  ①我们常用量角器量角,度,分秒是常用的角度单位,把一个周角360等分,每一份就是1度的角,记作:1°;同样的还有,把一度的角60等分,记作:1’:把1分的角60等分,记作1’’

  (2)换算方法

  ①由度化为分秒的形式:1°=60’,1’=60’’

  ②由分秒化为度的形式:1’’=

  ③画角的工具:三角板,量角器

  (5)角的比较和运算

  ①比较:可以用量角器量出度数再比较

  ②和差:两种意义,几何意义和代数意义

  (6)角*分线

  从一个角的顶点出发,把这个角分成相等的两个角的射线

  6、余角和补角

  ①余角

  如果两个角的和等于90度,就说明这两个角互为余角

  简称互余,其中一个角是另一的角的余角

  ②补角

  如果两个角的和等于180°,就说这两个角互为补角,简称互补,其中一个角是另一个角的补角

  ③性质

  等角(或同角)的余角补角相等

  7、方位角

  方位角通常以正南或正北方向为基准,描述物体运动的方向,通常先写正北或正南,在写偏东或偏西

  相交线与*行线

  1、两条相交线所形成的角

  邻补角:有一条公共边,它们的一条边互为反向延长线,邻补角互补

  对顶角:有一个公共点,它们的两边都互为反向延长线,具有这种关系的两个角互为对顶角,对顶角相等

  (1)邻补角和对顶角都是成对出现的

  (2)对顶角相等:但相等不一定是对顶角

  (3)两条直线相交,形成两组对顶角,分别相等,这一条件作为隐含条件,因此可以直接使用

  (4)在两条直线相交所得的四个角中,其中有公共顶点但没有公共边的两个角是对顶角,有公共顶点且有一条公共边的两个角都是邻补角

  2、垂线的相关定义

  ①垂直:当两条直线相交所形成的4个角中,有一个角是直角时,就说这两条直线相互垂直。

  ②垂线:当两条直线相互垂直时,其中一条直线叫做另一条直线的垂直

  ③点到直线的距离:直线外一点与直线上各点的所有线段中,垂线最短,简称“垂线段最短”

  注:1、垂线是直线,垂线段是线段

  2、斜线段有无数条,而垂线段只有一条

  3、在比较两条线段的长短时,要弄清那一条是垂线

  3、*行线

  ①定义:在同一*面内,永不相交的两条直线叫做*行线。直线a与b*行,记a//b

  ②画法:一落-----把三角尺一边落在已知直线上

  二靠-------用直尺紧靠三角形的另一边

  三移-------把三角形沿直尺的边推到三角尺的第一边恰好经过已知点的位置

  四画------沿三角尺过已知点的边画直线

  (3)*行线的公理及其推论

  ①*行公理:经过直线外的一点,有且只有一条直线与这条直线*行,推论:如果两直线都与第三条直线*行,那么着两条直线互相*行

  (4)*行线的判定

  ①同位角相等,两直线*行

  ②内错角相等,两直线*行

  ③同旁内角互补,两直线*行

  (5)*行线的性质

  ①两直线*行,同位角相等

  ②两直线*行,内错角相等

  ③两直线*行,同旁内角互补

  注:*行线的性质和*行线判定的区别

  判定是由角相等或互补推出的直线*行,性质是由直线*行推出的角的相等或互补


数学立体几何知识点 (菁华3篇)扩展阅读


数学立体几何知识点 (菁华3篇)(扩展1)

——数学立体几何知识点 40句菁华

1、空间几何体的三视图

2、棱锥 S-底面积h-高 ;V=Sh/3

3、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高

4、直圆锥r-底半径;h-高 V=r2h/3

5、球 r-半径 ;d-直径 V=4/3d2/6

6、球缺 h-球缺高;r-球半径;a-球缺底半径

7、如果两条直线都和第三条直线*行,这两条直线也互相*行

8、同旁内角互补,两直线*行

9、定理三角形两边的和大于第三边

10、三角形内角和定理三角形三个内角的和等于180°

11、推论2三角形的一个外角等于和它不相邻的两个内角的和

12、推论3三角形的一个外角大于任何一个和它不相邻的内角

13、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

14、定理1在角的*分线上的点到这个角的两边的距离相等

15、推论3等边三角形的各角都相等,并且每一个角都等于60°

16、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

17、四边形的外角和等于360°

18、推论任意多边的外角和等于360°

19、矩形性质定理1矩形的四个角都是直角

20、矩形判定定理1有三个角是直角的四边形是矩形

21、菱形性质定理1菱形的四条边都相等

22、菱形判定定理2对角线互相垂直的*行四边形是菱形

23、正方形性质定理1正方形的四个角都是直角,四条边都相等

24、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心*分

25、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

26、等腰梯形性质定理等腰梯形在同一底上的两个角相等

27、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

28、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

29、性质定理3相似三角形面积的比等于相似比的*方

30、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

31、弦切角定理弦切角等于它所夹的弧对的圆周角

32、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

33、定理相交两圆的连心线垂直*分两圆的公共弦

34、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

35、正三角形面积√3a/4

36、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。

37、体、面、线,点

38、线段的性质

39、两条相交线所形成的角

40、两个*面*行的主要性质:


数学立体几何知识点 (菁华3篇)(扩展2)

——数学立体几何知识点通用5篇

  数学立体几何知识点 1

  1、过两点有且只有一条直线

  2、两点之间线段最短

  3、同角或等角的补角相等

  4、同角或等角的余角相等

  5、过一点有且只有一条直线和已知直线垂直

  6、直线外一点与直线上各点连接的所有线段中,垂线段最短

  7、*行公理经过直线外一点,有且只有一条直线与这条直线*行

  8、如果两条直线都和第三条直线*行,这两条直线也互相*行

  9、同位角相等,两直线*行

  10、内错角相等,两直线*行

  11、同旁内角互补,两直线*行

  12、两直线*行,同位角相等

  13、两直线*行,内错角相等

  14、两直线*行,同旁内角互补

  15、定理三角形两边的和大于第三边

  16、推论三角形两边的差小于第三边

  17、三角形内角和定理三角形三个内角的和等于180°

  18、推论1直角三角形的两个锐角互余

  19、推论2三角形的一个外角等于和它不相邻的两个内角的和

  20、推论3三角形的一个外角大于任何一个和它不相邻的内角

  21、全等三角形的对应边、对应角相等

  22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  25、边边边公理(SSS)有三边对应相等的两个三角形全等

  26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  27、定理1在角的*分线上的点到这个角的两边的距离相等

  28、定理2到一个角的两边的距离相同的点,在这个角的*分线上

  29、角的*分线是到角的两边距离相等的所有点的集合

  30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  31、推论1等腰三角形顶角的*分线*分底边并且垂直于底边

  32、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

  33、推论3等边三角形的各角都相等,并且每一个角都等于60°

  34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35、推论1三个角都相等的三角形是等边三角形

  36、推论2有一个角等于60°的等腰三角形是等边三角形

  37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38、直角三角形斜边上的中线等于斜边上的一半

  39、定理线段垂直*分线上的点和这条线段两个端点的距离相等

  40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直*分线上

  41、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

  42、定理1关于某条直线对称的两个图形是全等形

  43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

  44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45、逆定理如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称

  46、勾股定理直角三角形两直角边a、b的*方和、等于斜边c的*方,即a^2+b^2=c^2

  47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  48、定理四边形的内角和等于360°

  49、四边形的外角和等于360°

  50、多边形内角和定理n边形的内角的和等于(n―2)×180°

  51、推论任意多边的外角和等于360°

  52、*行四边形性质定理1*行四边形的对角相等

  54、推论夹在两条*行线间的*行线段相等

  55、*行四边形性质定理3*行四边形的对角线互相*分

  56、*行四边形判定定理1两组对角分别相等的四边形是*行四边形

  57、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

  58、*行四边形判定定理3对角线互相*分的四边形是*行四边形

  59、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

  60、矩形性质定理1矩形的四个角都是直角

  61、矩形性质定理2矩形的对角线相等

  62、矩形判定定理1有三个角是直角的四边形是矩形

  63、矩形判定定理2对角线相等的*行四边形是矩形

  64、菱形性质定理1菱形的四条边都相等

  65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角

  66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

  67、菱形判定定理1四边都相等的四边形是菱形

  68、菱形判定定理2对角线互相垂直的*行四边形是菱形

  69、正方形性质定理1正方形的四个角都是直角,四条边都相等

  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

  71、定理1关于中心对称的两个图形是全等的

  72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心*分

  73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

  74、等腰梯形性质定理等腰梯形在同一底上的两个角相等

  75、等腰梯形的两条对角线相等

  76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  77、对角线相等的梯形是等腰梯形

  78、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79、推论1经过梯形一腰的中点与底*行的直线,必*分另一腰

  80、推论2经过三角形一边的中点与另一边*行的直线,必*分第三边

  81、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半

  82、梯形中位线定理梯形的中位线*行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h

  83、(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d

  84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例

  87、推论*行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边

  89、*行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90、定理*行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  94、判定定理3三边对应成比例,两三角形相似(SSS)

  95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96、性质定理1相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

  97、性质定理2相似三角形周长的比等于相似比

  98、性质定理3相似三角形面积的比等于相似比的*方

  99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101、圆是定点的距离等于定长的点的集合

  102、圆的内部可以看作是圆心的距离小于半径的点的集合

  103、圆的外部可以看作是圆心的距离大于半径的点的集合

  104、同圆或等圆的半径相等

  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

  107、到已知角的两边距离相等的点的轨迹,是这个角的*分线

  108、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

  109、定理不在同一直线上的三个点确定一条直线

  110、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

  111、推论1

  ①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧

  ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧

  ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧

  112、推论2圆的两条*行弦所夹的弧相等

  113、圆是以圆心为对称中心的中心对称图形

  114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116、定理一条弧所对的圆周角等于它所对的圆心角的一半

  117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  121、①直线L和⊙O相交d�r

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d�r

  122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

  123、切线的性质定理圆的切线垂直于经过切点的半径

  124、推论1经过圆心且垂直于切线的直线必经过切点

  125、推论2经过切点且垂直于切线的直线必经过圆心

  126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

  127、圆的外切四边形的两组对边的和相等

  128、弦切角定理弦切角等于它所夹的弧对的圆周角

  129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134、如果两个圆相切,那么切点一定在连心线上

  135、①两圆外离d�R+r

  ②两圆外切d=R+r

  ③两圆相交R―r�d�R+r(R�r)

  ④两圆内切d=R―r(R�r)⑤两圆内含d�R―r(R�r)

  136、定理相交两圆的连心线垂直*分两圆的公共弦

  137、定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  139、正n边形的每个内角都等于(n―2)×180°/n

  140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  141、正n边形的面积Sn=pnrn/2

  p表示正n边形的周长

  142、正三角形面积√3a/4

  a表示边长

  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n―2)180°/n=360°化为(n―2)(k―2)=4

  144、弧长计算公式:L=n∏R/180

  145、扇形面积公式:S扇形=n∏R/360=LR/2

  146、内公切线长=d―(R―r)外公切线长=d―(R+r)

  图形认识初步

  1、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。

  ①立体图形:有些几何图形(如长方形,正方体,圆柱,圆锥,球等)的各部分都不在同一*面内,它们是立体图形。

  ②*面图形:有些几何图形(如线段,角,三角形,长方形,圆等)的各部分都在同一*面内,它们是*面图形

  (2)从不同方向看物体

  ①从正面看,可以分清物体的长度和高度

  ③从左面看,可以分清物体的高度和宽度

  ④从上面看,可以分清物体的长度和宽度

  2、体、面、线,点

  体:几何体也简称体

  面:包围着体的是面

  线:面和面相交的地方是线

  点:线和线相交的地方是点

  点动成线,线动成面,面动成体

  注:(1)一般柱体都可以由底面的*面图形沿棱*移得到

  (2)一般来说,有曲面的几何体,都可以由某一*面图形绕某一直线旋转得到

  3、直线,射线,线段

  (1)直线的基本性质(直线公理)

  经过两点有一条直线,并且只要一条直线,简称为2点确定一条直线

  (2)表示方法

  用一个小写字母表示,如直线l,线段a

  用大写字母表示如,线段AB,射线OA

  (3)点与直线的位置关系

  点在直线上________x_______

  A点直线外__________________P

  (4)两直线相交

  两条直线相交有一个公共点,即交点

  注意公理和定理的区分

  (1)命题的定义:判断一件事情的语句叫做命题

  (2)组成:①命题是由题设和结论组成的,题设是已知,结论是由已知推出的事项

  ②命题可以写成“如果………那么”的形式

  ③经过推论证实的真命题叫定理

  3、线段的性质

  (1)线段的画法

  尺规法:用圆规在射线AC上截取AB=a

  度量法:先量出线段a的长度,在画出一条等于这个长度的线段

  (2)线段的比较

  叠合法:即把其中的一条线段移到另一条线段上作比较

  度量法:即用刻度尺分别测量出它们的长度作比较

  (3)线段的中点

  一个点把其中一条线段分成两条相等的线段,这个点就叫做这条线段的中点,类似的还有线段的3等分点等。

  (4)线段公理

  两点连线的所有线段中,线段最短

  (5)线段距离:连接两点间线段的长度,叫做两点间的距离

  4、角

  定义:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线是角的两条边。

  注:角的大小和边长没有关系

  角可以看做由一条射线绕着它的端点旋转而成的图形,当终止位置和起始位置成一条直线时所成的角叫做*角,等终止位置和起始位置重合是所形成的`的角叫做周角。

  (2)角的表示法

  ①用3个大写字母表示,表示顶点的字母必须写中间

  ②当顶角处只有一个角时,可以用表示顶角的一个大写字母表示

  ③用数字或希腊字母表示

  (3)角的分类

  ①锐角:大于0°,小于90°的角

  ②直角:等于90°的角

  ④钝角:大于90°,小于180°的角

  ⑤*角:等于180°的角

  ⑥周角:等于360°的角

  (4)角的度量和换算

  ①我们常用量角器量角,度,分秒是常用的角度单位,把一个周角360等分,每一份就是1度的角,记作:1°;同样的还有,把一度的角60等分,记作:1’:把1分的角60等分,记作1’’

  (2)换算方法

  ①由度化为分秒的形式:1°=60’,1’=60’’

  ②由分秒化为度的形式:1’’=

  ③画角的工具:三角板,量角器

  (5)角的比较和运算

  ①比较:可以用量角器量出度数再比较

  ②和差:两种意义,几何意义和代数意义

  (6)角*分线

  从一个角的顶点出发,把这个角分成相等的两个角的射线

  6、余角和补角

  ①余角

  如果两个角的和等于90度,就说明这两个角互为余角

  简称互余,其中一个角是另一的角的余角

  ②补角

  如果两个角的和等于180°,就说这两个角互为补角,简称互补,其中一个角是另一个角的补角

  ③性质

  等角(或同角)的余角补角相等

  7、方位角

  方位角通常以正南或正北方向为基准,描述物体运动的方向,通常先写正北或正南,在写偏东或偏西

  相交线与*行线

  1、两条相交线所形成的角

  邻补角:有一条公共边,它们的一条边互为反向延长线,邻补角互补

  对顶角:有一个公共点,它们的两边都互为反向延长线,具有这种关系的两个角互为对顶角,对顶角相等

  (1)邻补角和对顶角都是成对出现的

  (2)对顶角相等:但相等不一定是对顶角

  (3)两条直线相交,形成两组对顶角,分别相等,这一条件作为隐含条件,因此可以直接使用

  (4)在两条直线相交所得的四个角中,其中有公共顶点但没有公共边的两个角是对顶角,有公共顶点且有一条公共边的两个角都是邻补角

  2、垂线的相关定义

  ①垂直:当两条直线相交所形成的4个角中,有一个角是直角时,就说这两条直线相互垂直。

  ②垂线:当两条直线相互垂直时,其中一条直线叫做另一条直线的垂直

  ③点到直线的距离:直线外一点与直线上各点的所有线段中,垂线最短,简称“垂线段最短”

  注:

  1、垂线是直线,垂线段是线段

  2、斜线段有无数条,而垂线段只有一条

  3、在比较两条线段的长短时,要弄清那一条是垂线

  3、*行线

  ①定义:在同一*面内,永不相交的两条直线叫做*行线。直线a与b*行,记a//b

  ②画法:

  一落――把三角尺一边落在已知直线上

  二靠――用直尺紧靠三角形的另一边

  三移――把三角形沿直尺的边推到三角尺的第一边恰好经过已知点的位置

  四画――沿三角尺过已知点的边画直线

  (3)*行线的公理及其推论

  ①*行公理:经过直线外的一点,有且只有一条直线与这条直线*行,推论:如果两直线都与第三条直线*行,那么着两条直线互相*行

  (4)*行线的判定

  ①同位角相等,两直线*行

  ②内错角相等,两直线*行

  ③同旁内角互补,两直线*行

  (5)*行线的性质

  ①两直线*行,同位角相等

  ②两直线*行,内错角相等

  ③两直线*行,同旁内角互补

  注:*行线的性质和*行线判定的区别

  判定是由角相等或互补推出的直线*行,性质是由直线*行推出的角的相等或互补

  数学立体几何知识点 2

  点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

  垂直*行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

  方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

  立体几何辅助线,常用垂线和*面。射影概念很重要,对于解题最关键。

  异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

  数学立体几何知识点 3

  立体几何初步

  (1)棱柱:

  定义:有两个面互相*行,其余各面都是四边形,且每相邻两个四边形的公共边都互相*行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边*行的全等多边形;侧面、对角面都是*行四边形;侧棱*行且相等;*行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;*行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的*方。

  (3)棱台:

  定义:用一个*行于棱锥底面的*面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的*行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴*行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个*行于圆锥底面的*面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  数学起源

  数学,古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义――“数学研究”。即使在其语源内,其形容词意义凡与学*有关的,亦被用来指数学。

  在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。

  数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。

  数学判定与性质区别

  性质是从客观角度认知事物的形式,事物本身所具有的与其他事物不同的根本属性。性质是指从数学概念直接推导得出的运算法则或者运算公式等延伸的知识。判定多用于数学的证明概念,通过事物的本质属性反映出的本质性质,以此作为依据推知下一步结论。

  数学立体几何知识点 4

  1.有关*行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复*中,首先应从解决*行与垂直的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线*行(垂直)、线面*行(垂直)、面面*行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2.判定两个*面*行的方法:

  (1)根据定义--证明两*面没有公共点;

  (2)判定定理--证明一个*面内的两条相交直线都*行于另一个*面;

  (3)证明两*面同垂直于一条直线。

  3.两个*面*行的主要性质:

  ⑴由定义知:两*行*面没有公共点。

  ⑵由定义推得:两个*面*行,其中一个*面内的直线必*行于另一个*面。

  ⑶两个*面*行的性质定理:如果两个*行*面同时和第三个*面相交,那

  么它们的交线*行。

  ⑷一条直线垂直于两个*行*面中的一个*面,它也垂直于另一个*面。

  ⑸夹在两个*行*面间的*行线段相等。

  ⑹经过*面外一点只有一个*面和已知*面*行。

  以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为性质定理,但在解题过程中均可直接作为性质定理引用。

  数学立体几何知识点 5

  1.*面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

  能够用斜二测法作图。

  2.空间两条直线的位置关系:*行、相交、异面的概念;

  会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

  3.直线与*面

  ①位置关系:*行、直线在*面内、直线与*面相交。

  ②直线与*面*行的判断方法及性质,判定定理是证明*行问题的依据。

  ③直线与*面垂直的证明方法有哪些?

  ④直线与*面所成的角:关键是找它在*面内的射影,范围是

  ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的*面角,确定点到直线的垂线.

  4.*面与*面

  (1)位置关系:*行、相交,(垂直是相交的一种特殊情况)

  (2)掌握*面与*面*行的证明方法和性质。

  (3)掌握*面与*面垂直的证明方法和性质定理。尤其是已知两*面垂直,一般是依据性质定理,可以证明线面垂直。

  (4)两*面间的距离问题点到面的距离问题

  (5)二面角。二面角的*面交的作法及求法:

  ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

  ②垂线、斜线、射影法,一般要求*面的垂线好找,一般在计算时要解一个直角三角形。

  ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法


数学立体几何知识点 (菁华3篇)(扩展3)

——中考数学的知识点3篇

  逆定理的内容:

  如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。

  说明:

  (1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的*方和与较长边的*方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;

  (2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.

  2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:

  (1)确定最大边;

  (2)算出最大边的*方与另两边的*方和;

  (3)比较最大边的*方与别两边的*方和是否相等,若相等,则说明是直角三角形。

  1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

  2、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。

  3、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。

  4、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。

  5、象限:两条坐标轴把*面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

  6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标②第二象限的点:横坐标 0,纵坐标③第三象限的点:横坐标 0,纵坐标④第四象限的点:横坐标 0,纵坐标 0。

  7、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标 0,纵坐标②x轴负半轴上的点:横坐标 0,纵坐标③y轴正半轴上的点:横坐标 0,纵坐标④y轴负半轴上的点:横坐

  标 0,纵坐标⑤坐标原点:横坐标 0,纵坐标 0。(填、或=)

  8、点P(a,b)到x轴的距离是 |b| ,到y轴的距离是 |a| 。

  9、对称点的坐标特点①关于x轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

  10、点P(2,3) 到x轴的距离是 到y轴的距离是 点P(2,3) 关于x轴对称的点坐标为( ,点P(2,3) 关于y轴对称的'点坐标为( , )。

  11、如果两个点的 横坐标 相同,则过这两点的直线与y轴*行、与x轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直 。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQy轴。

  12、*行于x轴的直线上的点的纵坐标相同;*行于y轴的直线上的点的横坐标相同;在一、三象限角*分线上的点的横坐标与纵坐标相同;在二、四象限角*分线上的点的横坐标与纵坐标互为相反数。如果点P(a,b) 在一、三象限角*分线上,则P点的横坐标与纵坐标相同,即 a = b ;如果点P(a,b) 在二、四象限角*分线上,则P点的横坐标与纵坐标互为相反数,即 a = -b 。

  13、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。

  14、图形的*移可以转化为点的*移。坐标*移规律:①左右*移时,横坐标进行加减,纵坐标不变;②上下*移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按左减右加、上加下减的规律进行。如将点P(2,3)向左*移2个单位后得到的点的坐标为( , );将点P(2,3)向右*移2个单位后得到的点的坐标为( , );将点P(2,3)向上*移2个单位后得到的点的坐标为( , );将点P(2,3)向下*移2个单位后得到的点的坐标为( , );将点P(2,3)先向左*移3个单位后再向上*移5个单位后得到的点的坐标为( , );将点P(2,3)先向左*移3个单位后再向下*移5个单位后得到的点的坐标为( , );将点P(2,3)先向右*移3个单位后再向上*移5个单位后得到的点的坐标为( , );将点P(2,3)先向右*移3个单位后再向下*移5个单位后得到的点的坐标为( , )。

  一般地,在某一个变化过程中,有两个变量x和y,如果给定一个x值,相应夺就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。函数的表示法有三种:解析法、图象法、列表法。

  把一个函数关系式的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在*面坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。即:若点P(x,y)的坐标满足函数关系式,则点P在函数图象上;反之,若点P在函数图象上,则P(x,y)的坐标满足函数关系式。描点法画函数图象的步骤:列表、描点、连线。

  要使函数关系式有意义:

  函数关系式形式

  自变量取值范围

  整式函数

  全体实数

  分式函数

  使分母不为零

  根式函数

  偶次根式

  使被开方数非负

  奇次根式

  全体实数

  零指数、负指数形式函数

  使底数不为零

  正比例函数与一次函数的概念:(1)一次函数:形如(k≠0,k,b是常数)的函数叫做一次函数。(2)正比例函数:形如,k是常数)的函数叫做正比例函数。(3)正比例函数与一次函数的关系:正比例函数是一次函数的特殊情形。

  中考数学知识点

  三角函数关系

  倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  *方关系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)


数学立体几何知识点 (菁华3篇)(扩展4)

——初三数学知识点3篇

  二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴*行于y轴的抛物线。

  一般的,自变量x和因变量y之间存在如下关系:

  一般式

  y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;

  顶点式

  y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

  交点式

  y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

  牛顿插值公式(已知三点求函数解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。由此可引导出交点式的系数a=y1/(x1*x2) (y1为截距)

  1、矩形的概念

  有一个角是直角的*行四边形叫做矩形。

  2、矩形的性质

  (1)具有*行四边形的一切性质

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等

  (4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的*行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的*行四边形是矩形

  4、矩形的面积:S矩形=长×宽=ab

  初三数学重点知识点(四)

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的*行四边形叫做正方形。

  2、正方形的性质

  (1)具有*行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直*分,每一条对角线*分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是*行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

  (一)知识要点:

  知识点1:同类二次根式

  (Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如 这样的二次根式都是同类二次根式。

  (Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

  知识点2:合并同类二次根式的方法

  合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

  知识点3:二次根式的加减法则

  二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

  知识点4:二次根式的混合运算方法和顺序

  运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

  知识点5:二次根式的加减法则与乘除法则的区别

  乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。


数学立体几何知识点 (菁华3篇)(扩展5)

——初中数学全册知识点3篇

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

  7、高线、中线、角*分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、*行四边形的定义、性质及判定

  1、两组对边*行的四边形是*行四边形。

  2、性质:

  (1)*行四边形的对边相等且*行

  (2)*行四边形的对角相等,邻角互补

  (3)*行四边形的对角线互相*分

  3、判定:

  (1)两组对边分别*行的四边形是*行四边形

  (2)两组对边分别相等的四边形是*行四边形

  (3)一组对边*行且相等的四边形是*行四边形

  (4)两组对角分别相等的四边形是*行四边形

  (5)对角线互相*分的四边形是*行四边形

  4、对称性:*行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的*行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的*行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的*行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的*行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线*分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的*行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的*行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的*行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线*行于三角形的第三边并等于第三边的一半;梯形的中位线*行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;*行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径*分这条弦并且*分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且*分弦所对的两条弧

  ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧

  ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧

  推论2圆的两条*行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线*分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直*分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180


数学立体几何知识点 (菁华3篇)(扩展6)

——初中数学教学知识点总结3篇

  *面直角坐标系

  *面直角坐标系:在*面内画两条互相垂直、原点重合的数轴,组成*面直角坐标系。

  水*的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为*面直角坐标系的原点。

  *面直角坐标系的要素:①在同一*面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  初中数学知识点:*面直角坐标系的构成

  对于*面直角坐标系的构成内容,下面我们一起来学*哦。

  *面直角坐标系的构成

  在同一个*面上互相垂直且有公共原点的两条数轴构成*面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水*位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水*的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  一、角的定义

  “静态”概念:有公共端点的两条射线组成的图形叫做角。

  “动态”概念:角可以看作是一条射线绕其端点从一个位置旋转到另一个位置所形成的图形。

  如果一个角的两边成一条直线,那么这个角叫做*角;*角的一半叫直角;大于直角小于*角的角叫做钝角;大于0小于直角的角叫做锐角。

  二、角的换算:

  1周角=2*角=4直角=360°;

  1*角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、补角的概念和性质:

  概念:如果两个角的和是一个*角,那么这两个角叫做互为补角。

  如果两个角的和是一个直角,那么这两个角叫做互为余角。

  说明:互补、互余是指两个角的数量关系,没有位置关系。

  性质:同角(或等角)的余角相等;

  同角(或等角)的补角相等。

  四、角的比较方法:

  角的大小比较,有两种方法:

  (1)度量法(利用量角器);

  (2)叠合法(利用圆规和直尺)。

  五、角*分线:

  从一个角的顶点引出的一条射线。把这个角分成相等的两部分,这条射线叫做这个角的*分线。

  常见考法

  (1)考查与时钟有关的问题;

  (2)角的计算与度量。

  误区提醒

  角的度、分、秒单位的换算是60进制,而不是10进制,换算时易受10进制影响而出错。

  1、正数和负数的有关概念

  (1)正数:比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  4、任何数的绝对值是非负数。

  最小的正整数是1,最大的负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的绝对值,绝对值大的反而小。

  6、有理数加法


数学立体几何知识点 (菁华3篇)(扩展7)

——立体几何教学反思通用10篇

  今天我上了立体几何后,对这节课有许多的想法。立体几何同学们在前面已经学*过,现在我们是一轮复*。今天,我们复*立体几何,却没有达到我预计的目的,主要表现在以下几个方面:

  一、课堂气氛不活跃

  立体几何要说难也难,要说简单也简单, 但涉及的知识比较多,定理定义比较多。学生认为立体几何比较难学,原因有这几个方面:

  (1)他们对三种语言之间的转换不熟练,给出符号语言,他们画不出图形,更不会用文字语言表达。(2)定理、定义记不得。例如证明线面*行,他们就不知道如何下手。

  (3)不会分析观察图形。给出一个图形,他们不知道怎样观察,如何入手。特别用空间向量来证明立体几何,很多同学建系是错的。所以他们一点兴趣都没有。看着学生上课一副无精打采的样子, 我心里也很着急。这样下去怎么办呢?

  二、没有完成教学目标

  我们这节课主要是复*立体几何基础知识及应用。我举例正方体来讲基础知识,我知道正方体学生比较熟悉,而且用空间向量来做也比较容易。在复*时,我坚持由浅入深,循序渐进,逐步提高的原则,学生的确比较感兴趣,也容易理解。但由于在这用时过多,使立体几何的应用没有讲解。

  三、没有做到精讲精练

  这节课,学生参与课堂教学的机会少,整节课都是自己在台上讲,老师把所有的事情都包办了,使学生的能力得不到提高,约束了学生的发展。 通过这节课的反思,我知道以后自己要在这几个方面下功夫:

  (1)充分、认真备课,对学生的学*情况作认真的分析和预测,完成每节课的教学目标。

  (2)课堂教学中,注重师生互动交流,使学生积极参与学*,注重精讲精练。

  (3)要谦虚,再谦虚,多向别人请教、共同提高。

  今天我们结束了必修二的第一部分内容立体几何的学*,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学*立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。

  其实,任何知识的学*都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学*和感悟总能有所收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。

  要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关*行和垂直的.性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。

  课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。

  新课程标准理念要求教师从片面注重知识的传授转变到注重学生学*能力的培养,教师不仅要关注学生学*的结果,更重要的是要关注学生的学*过程,促进学生学会自主学*、合作学*,引导学生探究学*,让学生亲历、感受和理解知识产生和发展的过程,培养学生的数学素养和创新思维能力,重视学生的可持续发展,培养学生终身学*的能力,因此我们应该更新教育观念,真正做到变注入式教学为启发式,变学生被动听课为主动参与,变单纯知识传授为知能并重。在教学中让学生自己观察,让学生自己思考,让学生自己表述,让学生自己动手,让学生自己得出结论。

  立体几何是高中数学相对比较容易的一部分,从目前复*情况来看,学生学不好的原因大致有三个:一是没有建立立体感和空间概念;二是基础知识不牢固;三是表述不规范。以下是我在教学中对如何帮助学生学好立体几何的一些反思:

  1、建立空间概念,强化空间思维能力

  从认识*面图形到认识立体图形是一次飞跃,要有一个过程。建立空间观念要做到:

  (1)重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。

  (2)加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水*面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。

  (3)加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。

  此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

  案例一:起始课中注意空间立体感的培养

  立体几何第一节课导入部分中,我要求学生共同完成一个任务。首先,用一张纸经过剪裁、折叠做成一个正方体;然后,画出所做的正方体。通过这个任务的完成大大提高了学生的学*兴趣,使学生感悟数学世界的简洁美、和谐美,培养学生审美意识。课后,我留的作业是画可两个课本中你感兴趣的立体图形。进一步帮助学生建立空间立体感。

  案例二:游戏中感受数学美

  在讲解《空间直线》这节课中我让学生做一个游戏:用一张纸对折,把它看成两个相交*面,我们在这两个*面内各画一条直线,使它们成为:①*行直线;②相交直线;③异面直线。然后画出你做的图形并观察所画直线和两*面交线的关系。游戏中同学们都积极动手、动脑,充分调动学生主观能动性,通过自己的努力认识到3种直线的位置关系,建立空间立体观念,并进而研究三种直线位置关系的画法。

  其实在每节课中都能设立这样的实际操作的问题,并且让同学在自制一些空间几何模型后反复观察,这样有益于建立空间观念。让同学对这些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,同样也是建立空间观念的好方法。

  2、*面几何基础使立体几何学*事半功倍

  因为无论什么样的立体几何问题,都是在*面上处理的,因而*面几何知识的掌握与否也影响立体几何的学*。因而在教学过程中要注意对*面几何知识的复*。要让学生在做题时找到所需*面和相应的点、线的位置关系,要把立体问题,转化为*面问题,其实也需要很多经验和技巧,通过多给学生作题,使他们自己慢慢体会。

  3、教学中注重“转化”思想的培养

  我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

  (1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的*行线。斜线与*面所成的角转化为直线与直线所成的角即斜线与斜线在该*面内的射影所成的角。

  (2)异面直线的距离可以转化为直线和与它*行的*面间的距离,也可以转化为两*行*面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

  (3)面和面*行可以转化为线面*行,线面*行又可转化为线线*行。而线线*行又可以由线面*行或面面*行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

  (4)三垂线定理可以把*面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为*面内的两条直线垂直。

  以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

  4、教学中注重规范的训练

  不少学生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求学生在*时养成良好的答题*惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分内容的学*中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。所以要让学生明确几何语言是最讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。

  至于怎样培养学生证明立体几何问题可从下面两个角度去研究:

  (1)把几何中所有的定理分类。按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。

  如:*行于同一条直线的两条直线*行,既可以把它看成是两条直线*行的性质定理,也可以把它看成是两条直线*行的判定定理。又如:如果两个*面*行且同时和第三个*面相交,那么它们的交线*行。它既是两个*面*行的性质定理又是两条直线*行的判定定理。

  这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线和*面垂直,可以用下面的定理:

  ①直线和*面垂直的判定定理

  ②两条*行垂直于同一个*面

  ③一条直线和两个*行*面同时垂直

  (2)让学生明确自己要做什么。在牢牢地掌握立体几何的概念、定理、法则、公式的基础上,面对一道题一定要让学生知道自己要做什么!不要拿到一道题就盲目地去做。在证明之前就要设计好证明的路线,明确自己的每一步的目的,让学生学会大胆假设,仔细推理。并能再作题过程中强化立体几何的概念、定理、法则、公式的记忆,从而能融会贯通。

  《立体几何》是高中数学较难理解的内容之一,就其原因,主要是学生受*面思维的束缚,尚未建立起相应的空间观念,缺乏空间想象能力和逻辑思维能力所致。怎样让学生更好的学好空间几何呢?

  一、抓好入门教学,准确、牢固的理解和掌握概念、定理。

  1、直观形象的引入观念。

  在概念教学中应在对足够的感性材料加以比对、分析和抽象的基础上从感性认识出发引进新概念。如:*面这一概念可借助*静的水面、*板玻璃的表面等这些给我们以*面形象的具体实物来引入。需注意的是,几何中的*面是在空间无限延展的,*静的水面、*板玻璃等只能看做*面的一部分。

  2、借助已知概念理解新概念。

  如借助直线理解*面,一条直线有两个点在一个*面内,那么这条直线上的所有点都在这个*面内。直线很直,*面必很*,直线无限延长,*面必无限延展。利用学生对直线的`认识加深对*面的理解。

  3、抓住要点掌握概念。

  如二面角的*面角概念教学中应抓住三个要点:(1)顶点必须在棱上;(2)两边分别在两个半*面内;(3)两边必须垂直于棱,再配以相关的图形,学生对这个概念的理解就比较准确了。

  4、对比联系记忆概念。

  如“不同在任一*面内的两条直线”与“在不同*面内的两条直线”有着本质的差异,前者是异面直线,而后者中的两条直线则有在同一*面内的可能。这样,对比不同的表述。找出其相异点,才能更好的理解记忆所学概念。

  5、抓住定理中的关键“字词”。

  如在线面垂直的判定定理中,如果一条直线垂直于一个*面内的两条“相交直线”那么线面垂直。“两条”与“垂直”缺一不可,而垂直是否过交点则不必考虑。又如在射影定理中,“从*面外一点向一个*面引垂线段和斜线段”,必须强调“从*面外一点”和“一个*面”,否则会片面得出“射影长相等时斜线也相等”的错误结论。

  6、把握实质,概括精髓,加强对定理的记忆。

  记得牢才能用的好,如对于三垂线定理和逆定理的记忆,可概括为“影垂则斜垂,斜垂则影垂,又如记忆线面*行的判定定理和性质定理,可概括为”线线*行则线面*行,及线面*行则线线*行。

  二、避免常犯错误培养学生的空间想象力。

  1、把立体问题当做*面问题来处理。

  2、书写不规范,不严谨、不完善。

  3、忽视图形的多种可能性。

  《立体几何》是高中数学较难理解的内容之一,就其原因,主要是学生受*面思维的束缚,尚未建立起相应的空间观念,缺乏空间想象能力和逻辑思维能力所致。怎样让学生更好的学好空间几何呢?

  一、抓好入门教学,准确、牢固的理解和掌握概念、定理。

  1、直观形象的引入观念。

  在概念教学中应在对足够的感性材料加以比对、分析和抽象的基础上从感性认识出发引进新概念。如:*面这一概念可借助*静的水面、*板玻璃的表面等这些给我们以*面形象的具体实物来引入。需注意的是,几何中的*面是在空间无限延展的,*静的水面、*板玻璃等只能看做*面的一部分。

  2、借助已知概念理解新概念。

  如借助直线理解*面,一条直线有两个点在一个*面内,那么这条直线上的所有点都在这个*面内。直线很直,*面必很*,直线无限延长,*面必无限延展。利用学生对直线的认识加深对*面的理解。

  3、抓住要点掌握概念。

  如二面角的*面角概念教学中应抓住三个要点:(1)顶点必须在棱上;(2)两边分别在两个半*面内;(3)两边必须垂直于棱,再配以相关的图形,学生对这个概念的理解就比较准确了。

  4、对比联系记忆概念。

  如“不同在任一*面内的两条直线”与“在不同*面内的两条直线”有着本质的差异,前者是异面直线,而后者中的.两条直线则有在同一*面内的可能。这样,对比不同的表述。找出其相异点,才能更好的理解记忆所学概念。

  5、抓住定理中的关键“字词”。

  如在线面垂直的判定定理中,如果一条直线垂直于一个*面内的两条“相交直线”那么线面垂直。“两条”与“垂直”缺一不可,而垂直是否过交点则不必考虑。又如在射影定理中,“从*面外一点向一个*面引垂线段和斜线段”,必须强调“从*面外一点”和“一个*面”,否则会片面得出“射影长相等时斜线也相等”的错误结论。

  6、把握实质,概括精髓,加强对定理的记忆。

  记得牢才能用的好,如对于三垂线定理和逆定理的记忆,可概括为“影垂则斜垂,斜垂则影垂,又如记忆线面*行的判定定理和性质定理,可概括为”线线*行则线面*行,及线面*行则线线*行。

  二、避免常犯错误培养学生的空间想象力。

  1、把立体问题当做*面问题来处理。

  2、书写不规范,不严谨、不完善。

  3、忽视图形的多种可能性。

  今天我们结束了必修二的第一部分内容立体几何的学*,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学*立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。

  其实,任何知识的学*都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学*和感悟总能有所收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。

  要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。

  从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关*行和垂直的性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。

  欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。

  课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。

  新课程标准理念要求教师从片面注重知识的传授转变到注重学生学*能力的培养,教师不仅要关注学生学*的结果,更重要的是要关注学生的学*过程,促进学生学会自主学*、合作学*,引导学生探究学*,让学生亲历、感受和理解知识产生和发展的过程,培养学生的数学素养和创新思维能力,重视学生的可持续发展,培养学生终身学*的能力,因此我们应该更新教育观念,真正做到变注入式教学为启发式,变学生被动听课为主动参与,变单纯知识传授为知能并重。在教学中让学生自己观察,让学生自己思考,让学生自己表述,让学生自己动手,让学生自己得出结论。

  立体几何是高中数学相对比较容易的一部分,从目前复*情况来看,学生学不好的原因大致有三个:一是没有建立立体感和空间概念;二是基础知识不牢固;三是表述不规范。以下是我在教学中对如何帮助学生学好立体几何的一些反思:

  1、建立空间概念,强化空间思维能力

  从认识*面图形到认识立体图形是一次飞跃,要有一个过程。建立空间观念要做到:

  (1)重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。

  (2)加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水*面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。

  (3)加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。

  此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

  案例一:起始课中注意空间立体感的培养

  立体几何第一节课导入部分中,我要求学生共同完成一个任务。首先,用一张纸经过剪裁、折叠做成一个正方体;然后,画出所做的正方体。通过这个任务的完成大大提高了学生的学*兴趣,使学生感悟数学世界的简洁美、和谐美,培养学生审美意识。课后,我留的作业是画可两个课本中你感兴趣的立体图形。进一步帮助学生建立空间立体感。

  案例二:游戏中感受数学美

  在讲解《空间直线》这节课中我让学生做一个游戏:用一张纸对折,把它看成两个相交*面,我们在这两个*面内各画一条直线,使它们成为:①*行直线;②相交直线;③异面直线。然后画出你做的图形并观察所画直线和两*面交线的关系。游戏中同学们都积极动手、动脑,充分调动学生主观能动性,通过自己的努力认识到3种直线的位置关系,建立空间立体观念,并进而研究三种直线位置关系的画法。

  其实在每节课中都能设立这样的实际操作的问题,并且让同学在自制一些空间几何模型后反复观察,这样有益于建立空间观念。让同学对这些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,同样也是建立空间观念的好方法。

  2、*面几何基础使立体几何学*事半功倍

  因为无论什么样的立体几何问题,都是在*面上处理的,因而*面几何知识的掌握与否也影响立体几何的学*。因而在教学过程中要注意对*面几何知识的`复*。要让学生在做题时找到所需*面和相应的点、线的位置关系,要把立体问题,转化为*面问题,其实也需要很多经验和技巧,通过多给学生作题,使他们自己慢慢体会。

  3、教学中注重“转化”思想的培养

  我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

  (1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的*行线。斜线与*面所成的角转化为直线与直线所成的角即斜线与斜线在该*面内的射影所成的角。

  (2)异面直线的距离可以转化为直线和与它*行的*面间的距离,也可以转化为两*行*面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

  (3)面和面*行可以转化为线面*行,线面*行又可转化为线线*行。而线线*行又可以由线面*行或面面*行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

  (4)三垂线定理可以把*面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为*面内的两条直线垂直。

  以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

  4、教学中注重规范的训练

  不少学生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求学生在*时养成良好的答题*惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分内容的学*中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。所以要让学生明确几何语言是最讲究言之有据,言之有理。也就是说没有根据的话不要说,不符合定理的话不要说。

  至于怎样培养学生证明立体几何问题可从下面两个角度去研究:

  (1)把几何中所有的定理分类。按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。

  如:*行于同一条直线的两条直线*行,既可以把它看成是两条直线*行的性质定理,也可以把它看成是两条直线*行的判定定理。又如:如果两个*面*行且同时和第三个*面相交,那么它们的交线*行。它既是两个*面*行的性质定理又是两条直线*行的判定定理。

  这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线和*面垂直,可以用下面的定理:

  ①直线和*面垂直的判定定理

  ②两条*行垂直于同一个*面

  ③一条直线和两个*行*面同时垂直

  (2)让学生明确自己要做什么。在牢牢地掌握立体几何的概念、定理、法则、公式的基础上,面对一道题一定要让学生知道自己要做什么!不要拿到一道题就盲目地去做。在证明之前就要设计好证明的路线,明确自己的每一步的目的,让学生学会大胆假设,仔细推理。并能再作题过程中强化立体几何的概念、定理、法则、公式的记忆,从而能融会贯通。

  本学期主要复*了立体几何,空间想象一直是学生很头痛的问题。如何把抽象难懂的立体几何变的通俗易懂是困扰老师们已久的问题。下面我谈谈自己的一点体会。

  一、排除心理障碍,激发学*兴趣。很多学生认为立体几何难学,存在畏惧心理,信心不足。因此在教学中,把排除心理障碍,激发学*兴趣作为首要任务。

  二、从生活中学*数学,认识图形告诉学生,数学源于生活,服务生活。大街小巷,房屋楼群到处都是数学,都是立体几何。让学生留意身边的建筑物,并想象它们的.构造。日积月累,便可轻松学好立体几何。

  三、利用教具、模具教具模具是实物的抽象,但比较数学化,它们应该介于生活与数学之间,是帮助学生完成抽象思维和空间想象的桥梁。又可以培养学生的观察能力。敏锐的观察能力是学好数学的重要前提。

  四、层次递进,注重基本,不钻难偏由简到繁,注重基本知识和基本图形,使学生感觉有成就感,使学生都有收获。有助于增强学生的信心。

  今天我们结束了必修二的第一部分内容立体几何的学*,学生们感觉学的太快了,还没学得多透彻呢就结束了,心里可没底。之所以出现这样的情况,我认为可能有这几方面的原因,一,一些同学一直没有建立起来良好的空间感,二没有找到学*立体几何的方法和方向,三没有形成自己的知识网络,很多东西成散点分布并没有成线连网。所以感觉在解决问题的时候力不从心,无从下手。

  其实,任何知识的学*都要遵循知识构建的结构和规律。我们只要循着知识的发展和递进的规律进行学*和感悟总能有所收获。课本的设计就是这样的,采用的是螺旋式上升的方法力图使学生的认识得到上升。只不过很多学生并没有体会到这种思想,没有及时消化和构建知识。

  要在教学中做到胸有成竹,有的放矢,我们首先要研究教材,了解课本是如何设计的。必修二整册书以几何为主题,分欧式几何和解析几何两大部分,前者是传统几何学的研究方式,从空间几何体的整体观察入手,认识空间图形,了解简单几何体的结构特征,在此基础上研究其他的组合体,基本方法是:直观感知,操作确认,度量计算。从整体把握完以后再从构成几何体的点,线,面的位置关系去研究,并用数学语言表述有关*行和垂直的性质和判定,对某些结论进行论证。整个来说就是从整体到局部进行研究。欧式几何把几何和逻辑思想结合起来,用逻辑推理的方法研究几何问题,可以培养学生的空间想象力和逻辑推理能力。后者解析几何是通过坐标系,把几何中的点,直线与代数的基本研究对象数对应起来,建立图形与方程的对应,从而把代数和几何紧密结合起来,用代数的方法解决几何问题,这是数学的巨大进步。

  课本的设计是巧妙的,能不能取得较好的教学效果还需要我们师生共同努力去完成。老师有宏观的认识才能影响学生有较高的认识。

  高中数学必修二第二章:点、线、面的位置关系新课内容,估计约占20个课时,并且还经常感觉教学进度较快。回头反思这章的教学过程是必要的,也是重要的,毕竟这章教学的过程中老师们付出了太多的时间及精力,也充分体验了其中的酸甜苦辣。总之,感悟多多,收获也不少。

  刚开始对这一章的备课时,在充分阅读并领会了教学参考书之后,我对这章的教学充满了信心及热情。主要原因有:第一,对于教材的处理与新课标理念的理解与教学参考书有诸多一致的地方,第二,对学生及学情渐渐地有了比较全面的了解及把握。

  在教学过程中,我倡导“动手实验、直观感知、归纳猜想、操作确认”学*方式,充分体现学生的“主体性”,让学生不断经历“概念及定义的探索及发现过程”,强化生生、师生互动,等等。在这些措施的综合因素之下,有力地降低了学生学*的难度,同时激发了他们的学*兴趣,进而发展了“空间想像、逻辑思维”等能力,学会了“实验、观察、归纳猜想”等数学方法。

  随着学*的深入,知识量不断增加,譬如概念、判定及性质定理等。由于刚学*,大多数学生对这些知识理解不够深刻,进而出现了“学*负担明显加重,知识互相混淆,甚至张冠李戴”现象。越到后来,这种现象表现得更加严重,进而不少学生出现了消极情绪及负面心态。

  另外,立体几何的一大难点就是“思维证明”,主要原因在于:

  ①理性思维能力欠缺

  ②思维品质如严密性、敏捷性、灵活性、发散性等较差

  ③没有相关的解题经验,缺少可操作性的解题方法、策略及步骤等。

  ④心理因素,不少同学患有“证明恐惧症”。

  尽管新教材在这个方面作出了诸多尝试及努力,大大降低了证明的要求及难度,只须对性质定理及应用给予证明。可是,学*几何,不可能回避“证明”,何况证明对于逻辑思维的训练及发展有相当重要的作用。在学*到*行及垂直性质定理及证明的过程中,从作业反馈及学生建议来看,诸多学生对于证明*题无法入手;有些学生明晰思路,可无法用书面语言加以描述;有些学生书面语言欠缺规范,解题思路混乱,等等,不一而是。

  反思:

  数学知识具有系统及连续性,作为教师应该在新授课过程中,要随时注意与旧知识的联系,并有意识地复*前面的知识。譬如,在例题、*题的设置过程中,可以设置一些有层次性的题目,既照顾到旧知识,同时又为新知识的理解及掌握打好良好的基础。

相关词条